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A TECHNIQUE FOR DETERMINING CLOSURE 
IN SEMANTIC TABLEAUX 

Introduction 

by 

STEVEN J. BARTLETT 
Dept. of Philosoph' 

Saint Louis University 
St. Louis, Mo. 63103 (U.S.A.) 

The author considers the model-theoretic character of proofs and 
disproofs by means of attempted counterexample constructions. dis
tinguishes this proof format from formal derivations, then contrastsrtwo 
approaches to semantic tableaux proposed by Beth and Lambert-van 
Fraassen. It is noted that Beth's original approach has not as yet been 
provided with a precisely formulated rule of closure for detecting 

.� tableau sequences terminating in contradiction. To remedy this 
· 

deficiency, a technique is proposed to clarify tableau operations. 

A Technique for Determining Closure in Semamic Tableaux 
By the mid-1950's, contributions to natural deduction methods 

exhibited a pronounced model-theoretic character. Building on the 
work of Herbrand and Gentzen, Beth. Hintikka. Schutte and others 
developed techniques for finding a proof of a first-order Jj.)rmula by 
demonstrating the impossibility of constructing a counterexample.' 

1. (For works by Beth, see references.) lnttt olio: Jaakko Hintikka. "Oistributi\'e Normal 
Forms in the Calculus of Predicates," Arta Philosopltico FtmtiCII, Fasc. VI. Helsinki. 
19S3; "Form and Content in QuantifiCation Theory," Arta l'hilo.fnpilicct Fetmi<'D, F;�s� .. 

VIII, Helsinki. 19SS: "Distributive Normal Forms in First-Onler Logic." in J. N. Crosslc� 
and M . A. E. Dummcu. (Eds.), Formal Srstems and Rerursi1•e fim<'timu, Am�tcrdam: 

Nonh Holland Publishing Co., 1965. pp. 47-90. Kurt SchOlle. "Schlusswcbcn·KaiJ.:Oie 
dcr Prlidikatenlogik," M11thematische Annalen 111. 1950: "Ein System d.:s verkniip· 
fcnden Schliessens." Arrhiv filr mtltlmnatisclw LtJgik ""'' Grwullagt•ttjiJrsdmllg, :!, 1'}56. 
S.C. Klccne,/tJJrodurtlon lo Mt�amatlleliUitir� l'rin�-eton, N.J.: D. V;�n Nustrand. 195:!. 
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Descriptions of a counterexample may literally be thought of as models 
in which a falsifying instance of the formula in question is sys
tematically forced. When a systematic exploration of the conditions 
such a counterexample would have to satisfy necessarily terminates in 
contradiction, the original formula is proved. 

The idea of conceiving of proofs and disproofs as attempted model 
constructions may be one of the most philosophically interesting. Two 
of the strongest techniques of argumentation in philosophy share 
aspects of this approach: (i) reductio ad absurdum, applied to show that 
a position, often denying the one endorsed, results in contradiction,2 
and (ii) self-referential argumentation, serving to demonstrate that 
positions conflicting with one's own are self-defeating.3 

As yet. there has been little explicit use made in philosophical 
argumentation of recently developed techniques of proof and disproof 
through counterexample construction. One of the reasons for this may 
perhaps be that the best known of these techniques, Beth's method of 
semantic tableaux, has still to be formulated in a clear manner which 
facilitates its use. It is one of the purposes of this paper to contribute to 
this clarification. 

An approach to proofs and disproofs by means of a systematic 
construction of a possible COUJllerexample differs in sevenil ways from 
formal derivations. A formal derivation of X from premisses A1, A2, 
. . .  , is found when successive applications of available rules of in
ference yield the conclusion X. Alternatively, a proof of X is found if it 
can be shown that it is not possible without contradiction to construct a 

2. 

). 

2 

Sec. e.g .. Oilhcrl Ryle, "Proof§ in Philmophy," Rt'VUI' lntt'rnntimwlt' clt'plrilosnphit VII/, 
1954: "l'hilu�ophkal Arguments." in A. J. Ayer, (Ell.). Lo�:iml l'tr.vitM.mr, Uh:ncoc, 
Illinois: The Free l'ress 1959, pp. 327·344: John l'a.umore. Pililosophica/ Rm.rolliiiJ:. 
Lon\lon: G. Duckworth, 1961; Warren J. Hockeno�. An <'Xllmirmtitm 11/ Rt'drtctl<� ad 
Abmrdrtm anti Ar�lllllt'nlllm ad/lomillt!/11 Argrmw11t.t i11tlrt Philo.tophit'.r of Gilbert Rylt' 
nndl/t'llf.l' w. Jolut.r/(}IIC, Jr .• n�ton UnivcBity. Ph.D. dis.�ertation, 1968. 
See, for example, Frederic Brenton Fitch, "Self-Reference in Philosophy," Mind 55, 
1946; Henry W. Johnstone, Jr., Philosophy anti Argumt'lll, Philadelphia. Pa.: Penn· 
5vlvanin State University Pres.,, 1959; John Pa�smore, Phi/o:roplrico/ Reosoning. London: 
(Jerald Dm:kworth and Co .. 1961, Chap. 4; J. L Mackie, "Self-Rcfutatitln -/\Formal 
An<� lysis.'' '1111• Nrila.flJp/riml Qmlflt·r�l' /4, 1964: llod:cno11. 1968 (!'.f!c prec�:ding note): 
:1nd the author's "The lt.lca of a Mctulogic t>f Rcfc r�:nce," Mt•tlrmln/tJI(V tmd Scirnr<' 9, 
1976; "Self-Reference, l'hcnomcnology. and Phil�ophy of &:iencc", Ml!thoclology ond 
SC'il!nt<', /J, 1980: and "Referential Consistency .as a Criterion of Meaning", Sy11the.te 
51. 1982. 



A TECHNIQUE FOR DETERMINING CLOSURE IN SEMANTIC TABLEAUX 
··. 

falsifying instance such that both {At, A2, • • •  } and -X are affirmed. On 
the other hand, if one wished to show that A1, A2, • • •  rfX, it would be 
difficult, to say the least, to investigate all formal derivations starting 
from the premisses A1, � • • • •  , and thereby to determine that none 
leads to the conclusion X. Alternatively, it would be enough to identify 
an appropriate counterexample to At, A2, • • •  1-X. In short, from the 
standpoint of formal derivability, a derivation of X from A1• A2, • • •  

may be attempted: if a derivation is found, then 1-X; if no sut:h 
derivation exists, then 1-fX. Alternatively, we may try to construct a 

counterexample; if none can be constructed without contradiction. 
then 1-X; if a counterexample can be produced, then 1-fX. 

There are two principal but contrasting approaches to proofs and 
disproofs by means of attempted constructions of counterexamples. (I) 
Beth's original method of semantic tableaux (Beth .1955, 1959, 1962. 
and passim) enables one to explore exhaustively and in a systemntic 
manner all semantical conditions which must be satisfied in order for a 
counterexample to be possible. If a tableau reveals that a 
counterexample is logically impossible, then the original formula is 
known to be a theorem. If, on the other hand, a counterexample is 
constructed, the formula is known not to be a theorem. 

/ 
(2) Lambert and vnn Frarissen (1972) lu1vc proposed a tedmiquc, 

based on Beth (1962), in which a group of rules is formulated so as 
explicitly to reduce formulas to disjunctive normal form, and thereby 
make it possible to decide whether a formula is or is not a theorem. 

The two approaches yield, in practice, identical results. The mctlwds 
are effective for the propositional calculus: if H propositional calculus 
formula is a theorem, its semantic tuhlc:m will show the impossibility of 
constructing a counterexample. If the formula is not u theorem. each 
method will systematically yield a counterexample. For the first-order 
predicate calculus, semantic tableaux will not. ns one would expect. 
serve to detect without fail all invalid inference forms or non-theorems. 

The two approaches arc virtually the opposite of one another in 
terms of procedure. In Beth's presentation or his method or semantic 
tableaux, if an inference is analyzed, the formulu(s) constituting lhc 
premissc(s) is (are) placed on the left (True) side of the tahlenu , and the 
formula comprising the conclusion is pla.ced on the right (False) side. I r 
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a formula. rather than an inference, is analyzed, the formula is placed 
on the right side of the tableau. In either of these cases, applying Beth's 
tableau rules, if a contradiction is reached, then the contradiction 
indicates (a) that the semantical conditions which a possible 
counterexample must satisfy are mutually incompatible, hence a 
counterexample is impossible; and therefore (b) that the inference or 
formula is valid or is a theorem. If a contradiction is not reached, a 
propositional calculus inference or theorem is shown to be invalid or to · 

be a non-theorem. In the case of the predicate cal.:;ulus, if a con
tradiction is reached, validity or theoremhood is assured; if no con
tradiction is reached, and the tableau sequence cannot be continued, 
then the inference or formula is shown to be invalid or to be a non
theorem. However, in those cases when the predicate calculus tableau 
sequence cannot be terminated, one is unable to determine using 
semantic tableaux whether the inference or formula is or is not an 
invalid inference or is or is not a theorem. 

In the Lambert-van Fraassen approach, if one wishes to determine 
for a given formula whether it is a theorem, then the tableau sequence is 
initiated with the negation of that formula. Applying the Lambert-van 
Franssen tableau rules, the negated formula is reduced to disjunctive 
normal form. If the resulting disjunction is such that each and every of 
its disjuncts is a conjunction of one or more pairs of contradictory 
expressions, then the method leads to the conclusion that the original, 
unnegated �ormula is a theorem. The contradictions expressed by all 
the disjuncts reveal here, as in Beth's approach, that a counterexample 
cannot be constructed. Similarly, to determine whether a certain for
mula is a non-theorem, one begins the tableau sequence with that 
formula. follows the tableau rules, and, if a contradiction is reached. 
concludes that the formula is logically false. 

In short, the two approaches to semantic tableaux may be contrasted 
as follows: 

Belh Lambert-van Fraas.��en 

To sho'K' rhar t�formultl A iJ a theorem: 
I 

Place A in Fal�e Column. I Initiate tableau sequence with- A. 
I 
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If the tableau sequence terminates with a : If the tableau sequence terminates with a 
contradiction, A cannot consistently be fal· 1 contradiction, A is a th.:orcm. 
silied, hence A is a theorem. 

If the tableau sequence docs not terminate in 
a contrad�tion, but cannot be continued. 
then a countereumple has been identified, 

hence A is not a theorem. 

To show that a formula A is not a theorem: 

Place A in False Column I Initiate tableau sequence with A. 
I 

lrthe tableau sequence terminates without a I If the tableau sequence terminates witlr a 
contradiction, A can be falsified, hence A is I contradiction, A is not a theorem (although 
not a theorem. I -A is shown to be). 

I 

The original approach to semantic tableaux of Beth and the later 
version due to Lambert and van Franssen can both be formulated 
algorithmically in terms of their respective sets of tableau rules: i.e., 
both approaches are programmable on a logic machine. The principal 
difference between the two approaches, which results in the contrasting 
proof strategies we have noted, lies of course in differing formulations 
of the tableau rules. (For a statement of these rules, the reader is 
referred to Beth,(1955, 1959) and van Fraassen (1972).) 

Beth•s original method has the decided advantage of more closely 
approximating natural reasoning patterns. The technique enables one 
to analyze explicitly and systematically the semantical conditions which 
a falsifying instance must satisfy. Where the Lambert-van Fraasscn 
approach may be thought of as a set of rules to reduce formulas to 
disjunctive normal form, Beth•s method offers a procedure for 
undertaking what might be termed a presupposition:ll analysis of the 
semantical structure of formulas. 

Unfortunately. Beth•s method requires some procedure to determine 
closure. the statement of which has suffered from imprecision and 
ambiguity. A technique for determining closure is needed to make clear 
when a tableau sequence terminates in contradiction. We re�.:all that a 
tableau sequence will either (i) terminate in contradiction, (ii) ter
minate not in contradiction but because it cannot be continued, or (iii) 
not terminate at all. In the first case, the tableau sequence reveals the 
logical impossibility of constructing a suitable counterexample. In the 
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second case. a suitable counterexample is described. ln the third case, 
the tableau fails to reveal whether a formula is or is not a logical truth. 
A technique for determining closure is needed to decide between the 
case in which a counterexample is not constructible and the case in 
which a counterexample has been described. For these cases are by no 
means always readily distinguished in complex tableaux. 

In an effort to gain the needed clarity. the following formulation of a 
rule of closure was proposed: "A contradiction is reached when (i) there 
are no subcolumns and a symbol appears on both si�es of the tableau. 
or (ii) there are subcolumns, and for each subcolumn on one side of the 
tableau there are symbols occurring in it such that at least one of them 
occurs in every corresponding subcolumn on the other side of the 
tableau."" 

Determining closure is straightforward when neither side of a 
tableau divides into subcolumns. Difficulties arise only in connection 
with the existence of subcolumns on one side or both sides of a tableau. 
The tableaux with which we are here concerned are of this latter 
variety. To give some idea of the difficulties these tableaux pose we will 
consider several examples: 

The above rule questionably covers certain cases (see. e.g .• tableau 
(i), below), and is ambiguous when applied to certain others (tableaux 
(ii), (iii), (iv)). 

Tableau (i). To prove that (P A Q} • (P V Q} is not a theorem. 

True 

PV8l 
pI I 

I I 

i l I ' 

PI\ Q 
p 
Q 

Fa I� 
• 
I (P 1\ Q) • (PV Q) I 
' • I PI\ 0 I PVQ I 
1-(PVQ) l"'(P J\ Q) 

PiQ p 
' Q ' 
I 
' 
' 
' 

{'nmment: The t:tbleau �equence appear� tu meet condition (iii or the rule, yet, clearly, the 
li.Jrmula in lJUC'�tiun is not 11 thcur�:m. Sumc n:visinn of the rulc"rclo'lure in quc�tkiR iM nt"Cdcd. 

4. IJrndy. 1973, p. 12R. 
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Tuhleau (iiJ. To prove: that the inference: (X) (Fx .... Ox). (3x) (fx A Hx)r (3x) (0� A Hx) is 
valid. 

True false 

(x)(fx-+ Ox) 
(3x) (fx 1\ Hx) 

(3x) (Ox/\ Hx) 
(x) -tax A Hx) 
Fa 1\ Ha 
Fa 
Ha 
Fa-Oa 

-Fa 1 Oa 1 

: j Fa 
- (Oa 1\ Hal-(Oa A HaJ 

I ! Ga A Ha Oa A Ha 
l � I I 
: 1 Ga : Ha Ga 1 Ha 
t t 1 I 

Comment: The tableau sequence terminates in oontradictitm: a cuunter.:x:amplc is imp••s�ibt.:. 
However. Brody's formulation of the rule of closure is undear ltlr this case. 

Tableau (iii). Toprovethat the inference(x)(Fx .... (Ox V HxJ),(x)(Gx-+ l x),(x)- llll
(x) (Fx _. Hx) is valid. 

True 

(x) (fx-+ (Ox V Hl!.)) 
(x)(Gx-lx) 
(x)-lx 

(3x)-(Fx-Hx) 
-cFa-Ha) 

Fa 
Fa-(Ga V Ha) 
Ga-la 

- Ia 

-Fa Ga VHa 

- O:t Ia:- Ga:la;--.Gu Ia: 
t l � I t 

Comment: Same as for Tahleau (ii). 

oa: 
' 
' 

False 

(xl (fx - th) 

Fu-+Ha 
Ha 

Ia 

I 

Fa: 
I 
I 
t 
I 
1 (ia 
I 
1 

7 
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Tabh:au (iv). To prove that the inference (lt)(Flt_.-Gx),(3lt)(Gx V Hx) l-(3x)(-Fx V Hx) 
is valid. 

True 

(x) (Fx _,. -Gx) 
(3x) (Gx V Hx) 

(x)-(-Fx V Hx) 
GaV Ha 
Fa-.-Ga 
-(-Fa V Ha) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fa I 
------,G�a���� --A"a�· ---- --------·-: 

I I t - Fa 1 - Ga:- Fa 1- Ga 
I I I 
: : I 
o I I 

Comment: Same as for Tableau (ii). 

False 

(3x)(-Fx V Hx) 

-Fa V Ha 
-Fa 

Ha 

Fa Ga Fa Ga 

There has yet to be formulated a clearly stated technique for 
determining closure when, using Beth's approach, tableau sequences 
terminate in contradiction. That such a technique is needed should be 
evident from the presence of ambiguity in the few sample illustrations 
above. Semantic tableaux constitute a logically important technique, 
but one that is of little value if it is uncertain what conclusion is to be 
drawn from a given tableau sequence. 

To determine whether a tableau sequence that ·involves subcolumns 
terminates in contradiction, it is helpful to proceed as follows: First 
determine whether the True· and False- sides orthe tableau contain the 
same number of subcolumns. If one side contains more subcolumns 
than the other, subdivide further the side with fewer subcolumns, until 
hoth sides contain the same number of subcolumns, and in corre
sponding positions. The subcolumns of the tableau will now be bi· 
latcrully symmetrical with respect to the vertical midline of the tableau. 
Now, reproduce, below the last line of the tableau sequence, a summary 
or all elementary expressions which have occurred earlier in the 
sct)uence. placing these expressions in all appropriate subcolumns. as 
illustrated. 

8 
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Tableau (v). To prove that the inference Q-+ R 1- (PV Q) .... (PV R) is valid. 

True False 
Q-+ R  (PV Q)-> (PV R) 
P V Q  PVR 

p g I p 
-Q: R - o : R I R I ' ' I ' I I 

I I ' Q ! Q t I I 
I I t 
I Summary 

I 
I ! I ' 

2 3 4 I' 2' : 3' 4' 
I 

p p Q Q p p I p p I 

R R R R • R R ' 
Q Q 

II will be noted that only elementary expressions are li�ted in the tableau summarv: negations 
or elementary expressions are not summarized. 

• 

Having summarized in this fashion all tableau occurrences of 
elementary expressions by reproducing them in appropriate subcol
umns, three cases may arise: 

In the first, the subcolumns on the left side each containsonly a single 
elementary expression. For example: 

Tableau (vi). To prove that the inference PVQ 1- P A Q is invalid. 

True False 

PV Q p t\ Q 

If this is the case in question. a contradiction occurs in the tableau 
seque1rce If, tmd only if, each of tire e/em£•ntary c•xpressions mr tire l£ft can 
be paired with an identical expression in every subcolumn on the right. 
(Rule A) In the example above, no contradiction is reached. since •p• 
and 'Q' do not appear in both subcolumns on the right; hence the 
inference in question is invalid. 

9 
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A second case is also possible when the subcolumns on the left side 
contain multiple elementary expressions. For example: 

Tableau (vii). To prove that (P A Q) • (Q A P) is a theorem. 

True False 

fP A 0 • (Q A P) 
I 

P AO j QA P 
-(QA P) :-«PA Q) 

I 

QAP P AQ 
Q p 
p Q 

i 
I 
i 
I 

p I Q I Q p 
I 
I 

I I 2 3 I 4 
I I 
I I 

!' l' 3' I 4' I 
I 

p p p p 
Q Q Q Q 

p Q Qt p I 
I 

! 

If this is the case in question, a contradiction occurs in the tableau 
sequence if and only if every :mbcolumn on the right contains at least one 
oft he expressions found within each corresponding suhco/umn on the left. 
(Rule B) Or, equivalently stated, and referring to the example: 'P', 'Q' 
appear in the leftmost subcolumn. One or the other of these appears in 
each corresponding subcolumn on the right. This is true for each of the 
other subcolumns on t�e left side of the vertical mainline; hence the 
equivalence (P A Q) a (Q A P) is a theorem. 

In more complex tableau sequences, both of the above cases will be 
encountered together. In such "mixed" tableaux, rule A is weakened as 

follows: Identify every subcolumn on the True-side. each of which 
contains only a single elementary expression. Those subcolumns on the 
False-side that correspond in position are termed 'related subcolumns'. 
Then. a contradiction occurs in this portion of the tableau sequence if and 
on�v if each of tire elementary expressions on the left can he paired with an 
iden:ical expression in ew:ry rclmcd !Utbcol11nm on the right. (Rule A') 

For cx<tmple, to analyze the expression (P A Q) iii! (P V Q), which is 
dearly not a theorem: 

10 
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T ableou (viii). 

PV Q 

PTQ 
I 
I 
I 
• 
I 
I 
I 
' 
I 
I 
I 
I 
I 

I 
I I 

p I 

Trw 

2 I 
I 
I 

o! 
' 
' 
' 
I 
I 
I 

p 1\ Q p 
Q 

3 
p 
Q 

False 

(P f\ Q) • (P V Q) 

. I 1 
PA Q PV Q  I I 

' 

!- (PV Ql ! -CP 1\ (.}) 
I : I 
I . 
I I 
I 1 
I I 
I • 
I I 
I I 
I I 

I I 
I 

. I 
I 

p I I 
Q I p I I 

I I Q I I 
I • 
t I 

I I I 

Summary i I 
I 

4 I' 2' 3' 4' 
p p Q p p 
Q Q Q 

Subcolumns 1 and 2 exhibit case 1; subcolumns 3 and 4 belong to 
case 2. Although a contradiction is partially shown by inspecting sub
columns 3 and 4 CP' or 'Q' appears in corresponding subcolumns 3' and 
4'), a contradiction is not revealed in checking subcolumns I and 2 ('P' 
does not occur in both related subcolumns 1' and 2', nor does 'Q' 
appear in both related subcolumns 1' and 2'.) Therefore. the expression 
in question, (P A Q) e (P V Q), is not a theorem. since the tableau 
sequence does not terminate in contradiction. 

A third, quasi-limiting case may also arise, one that is less frequently 
mel with, and easily treated. It is poss ible that one or more subcolumns 
in the tableau summary may be empty. When an empty subcolumn 
occurs on one side of a tableau, it will be found that the corresponding 
subcolumn on the other side of the tableau is not empty. but rather 
effectively identifies a counterexample. To illustrate this: 

11 
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Tt1hlt•uu (i:c}. To show that the inference P • Q t- P A Q is invalid. 

True False 

P•Q PAQ 

p -P p 
Q -Q Q 

p Q p Q 

2 3 4 I I' 2' 3' 4' I I 

p p p Q p p 
Q Q Q Q 

Subcolumns 3 and 4 are empty, but their corresponding subcolumns 3' 
and 4' are not empty, hence a counterexample is possible, and thus the 
inference in question is invalid. The counterexample is constructed by 
assigning to the sequent the values p ... F and Q= F (the values in
dicated by subcolumns 3' and 4', which correspond to the empty sub· 
columns 3 and 4). 

The tableau for 1- (P -+ Q) -+ ,..., P illustrates the opposite 
asymmetry: 

-P 

I. 

True 

,. __ Q 
,. 

Q 

2 

p 
Q 

I 

I 
I 

Summary 

F11lse 

(P-oQl-- p. 
-P 

p 

I' 2' 

Here, the counterexample is constructed by assigning to the expression. 
(P-+Q)-+ - P, the values P=T nnd Q=T (the values indicated by 
subcolumn 2, which correspom.Js to the empty subcolumn 2'). 

Such considerations suggest a third rule of closure: No subcolumns in 

12 
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the tableau summary are to be empty. (Rule C) For, as we have observed. 
the occurrence of an empty subcolumn immediately identifies a 
counterexample. 

The closure rules A, A', B, and C together establish a technique for 
determining closure in semantic tableaux. To be perfectly clear, the 
technique requires that the meta-rule, that all pertinent closure rules 
must be satisfied, itself must of course be in force. 

To illustrate the proposed method for determining closure somewhat 
further, let us again look at tableau (iii), which provides a more 
complex example. 

(x) (Fx-(Qx V Hx)). (x) (Qx -lx). (x) -tx 1- (x) (Fx- Hx) 

-Fa 

I 
-Gaj Ia 

I I 
I 
I 

l2 I 

pi :.P& 
�� 
I 

I 

True 
(x)(Fx-(Ox V Hx) 
(x)(Gx-lx) 
(X) -Jx 
(3x)-(Fx- Hx) 
-(Fa-Ha) 

Fa 
Fa- (Qa V Ha) 
Ga-la 
-Ia 

Ga V Ha 

Ga I Ha 
' 
, I 

I 

I I Fa 
I 
I 
I I I I 

I - Gal la I I I \ I -Qatla : Ga; 
I I I 

I I I I ! 4 3 I I I 
F1 I Fa 

l oa 04 
Iii 
I 

s 
Fa 
ijd 

I 
!summary I 

I 

I I I 16 I 

I I 
1 Fa 1 
I I 
I fJ!t I 
I Jd' I I I I 1 

I' I 
I 

Ha :  
Ia • 
lXI: 
Ga l 

2' 

Ha 1 

iii 
�i 

I 

False 

(x)(Fx- Hx) 

Fa_, Ha 
Ha 

Ia 

• Qa I I 
. I 
I 

i 3' 4' I 
I 

Ha Ha : 
J4 I Ia ' I <nil I 

I I 
I I I I 

Qa! I 
I 
I 
I 
I 

S' I 6' I 
I 

tXt I l}!t 
I J4 Ia I Oa l 
I 
I 

Each elementary expression is reproduced in all suhcolumns in the 
tableau sequence, below its occurrence- i.e., in the cxamrlc. 'Fa' is 
placed in all True-subcolumns 1-6 �ince •fa• occurred prior to the 
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appearance of suhcolumns in the tableau. Similurly, 'G:t' is \Vrittcn in 
subcolumns 3 and 4 since 'Ga' occurred above the subdivision of these 
subcolumns. 'Ia' is reiterated in subcolumns 2, 4, and 6. The process is 
continued for 'Ha' in subcolumns 5 and 6, 'Ha' and 'Ia' in False-sub
columns 1'-6', and 'Fa' in subcolumns I' and 2'. 'Ga' is reiterated in 1', 
3' and 5'. 

Now, on the left side of the tableau, only subcolumn I contains a 
single elementary expression. Subcolumn 1', the related subcolumn on 
the right side, contains the same expression, satisfyi!)g the rule A'. 
Subcolumns 2-6 each contains one of the expressions listed in corre
sponding subcolumns 2'-6', satisfying rule B. Rule Cis satisfied. Ex
pressions with a slash through them identify those which conform to 
tableau rules A' and B, and which recur within corresponding subcol
umns. The tableau summary for (iii) indicates clearly and graphically 
that the sequent in question is valid. 

We may observe the following general result concerning the 
proposed technique for determining closure: If, and only if, in each 
non-empty subcolumn in the tableau summary at least one expression 
is slashed, then the tableau sequence terminates in contradiction, 
revealing that no counterexample is constructible. 

At this point, the reader may wish explicit justification for the set of 
rules that hus been introduced. To assuage any doubts concerning the 
effectiveness of these rules, the following informal proofs are given: 

Each of the rules is to be applied after a .tableau sequence has been 
summarized in the manner described. (With some practice, of course, 
this summary need only take place mentally.) Each of the rules 
describes conditions which must be satisfied if the tableau sequence is 
to terminate in contradiction. A proof that each rule succeeds in iden
tifying such conditions therefore must show that the attempt to con
struct a counterexample becomes impossible because, for each 
alternative occurring on the True-side of the tableau, pairs or semnn
tically incompatible, i.e., contradictory. propositions must be asserted. 

Each of the rules focuses on the status of subcolumns that appear on 
the left side of the tubleuu summary. 

Rule A refers to the case in which every subcolumn on the left each 
contains but a single elementary expression. We recall that each left-
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hand subcolumn expresses a (non-exclusive) scmanlit:al allcrnalivc. I f  
a lefthand subcolumn contains the expression 'P', ami 'P' occurs in all 
righthand subcolumns, this indicates that P is true in the given 
alternative, but that P is also false in all alternatives which appear on 
the righthand side of the tableau. When this situation occurs in con
nection with every alternative on the lefthand side, a counterexample 
cannot then be constructed without forcing a logical inconsistency. 

Rule B refers to the case in which the summary subcolumns on the 
lefthand side of a tableau contain more than only a s ingle expression. 
Each subcolumn expresses a semantical alternative in which all the 
expressions occurring in that subcolumn are true- i.e., the expressions 
comprise a conjunction which is true in that alternative. If a Jefthand 
subcolumn contains the expressions 'P', 'Q', and one or the other of 
these occurs in the corresponding alternative on the l'ighthand side, 
then clearly a contradiction, e.g., P.r.. Q, -.. P, is enlailed. When this 
situation occurs in connection with every alternative of this conjunctive 
variety on the lefthand side, a counterexample cannot then be con
structed without contradiction. 

Rule A' refers to the so-called "mixed" case: some lefthand subcol
umns contain only single expressions, some are conjunctions of two or 
more expressions. Some alternatives will thus involve conjunctions, 
whose status in the tableau is determined by attempting to match at 
least one conjunct with an expression in a corresponding false alterna
tive. If Rule B is satisfied, then it is sufficient to m�llch the single 
alternative expressions with identical expressions in their related false 
subcolumns. In effect, this demonstrates that every non-conjunctive 
alternative is contradicted by every false alternative thut remains to be 
considered provided that Rule B is satisfied. All alternatives. which 
under Beth's method of semanticnl annlysis must be true (if u 
counterexample is to be possible), are then shown to entail inconsist
ency. 

Rule C. which states the condition that there are 1o be no empty 
subcolumns in� tableau summary, is easily justified. Only if rule C is 
satisfied, is it possible for tableau sequences to terminate in con· 
tradiction. The occurrence of an empty subeolumn will correspond to a 
non-empty subcolumn on the other side of the tableau nnd therefore 

. 
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identifies a counterexample which is constructible without con- �
tradiction. The empty subcolumn expresses the fact that no semanticaf 

connict can obtain for the value(s) indicated by the corresponding·: 
non-empty subcolumn. 

· 

It should be evident that a non-empty subcolumn will always corre
spond to an empty one, since two empty corresponding subcolumns 
cannot appear in a tableau sequence. Corresponding subcolumns ex
press the semantical conditions associated with each half of paired 
disjunctions. If two corresponding subcolumns wer� empty, this would 
be tantamount to requiring that there exist a disjunction without a first 
(or, a second) disjunct, which is impossible. 

Rules A, A', B, and C define a systematic technique for determining 
closure: With a little practice, one is able to work efficiently and 
without ambiguity in the context of Beth's original method of semantic 
tableaux. 
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